PySE; Python Stencil Environment
Solving Partial Differential Equations with
Python

Asmund @degérd
November 15, 2005

Abstract

The purpose of the present paper is to discuss a new framework,
Python Stencil Environment, PySE, [1], implemented in Python, for solv-
ing Partial Differential Equations (PDEs) using the Finite Difference Method
(FDM). By implementing powerful building blocks, or abstractions, the
implementation makes a clean user interface possible. This allows the user
to focus more on the problem specification and the numerical methods he
wants to explore. All parts of PySE are inherently parallel, for effortless
deployment on parallel computers, thus making large-scale simulations
possible.

PySE is aimed at scientists who need an environment for implementing
solvers for PDEs in a simple and clean syntax. The strengths of PySE are
flexibility and the possibility of developing PDE solvers with immediate
feedback, suitable for experimenting with numerical methods or the rapid
prototyping of PDE solvers.

1 Introduction

Creating solvers for Partial Differential Equations (PDEs) is often associated
with complicated and error-prone coding in low-level languages. Maximum ef-
ficiency is usually the guiding rule when the environment is selected, and for
production code that should perform large-scale simulations for longer periods,
this is an excellent and even necessary guideline. However, for exploratory work
in scientific computing it may be worthwhile to consider other options.

Traditionally, the low-level languages C, C++ and Fortran have been the
most popular among computational scientists. However, in recent years, envi-
ronments such as Matlab, Maple, Octave, S-Plus and R have become popular. In
particular, Matlab has been the preferred environment for many computational
scientists and engineers. Some of the reasons for the success of these environ-
ments are these: simple and clean syntax, interactive execution with immediate
feedback, integration of visualization, and good documentation and online help.
In addition, a rich standard library of numerical functionality is available in the
environments, together with lots of built-in functions that operate efficiently
on arrays in compiled code. Although the performance from low-level compiled
languages is better, many scientists simply feel more productive in, for instance,
Matlab.

The high-level programming language Python has emerged as a viable alter-
native to Matlab, Octave and other similar environments. When extended with
numerical and visualization modules, Python shares many of the advantages
with the other interpreted environments mentioned above. Further, Python has

an additional advantage in that the language is very rich and powerful, having
been designed from the beginning as an object-oriented language. See [B] for
more complete coverage of the advantages of Python in scientific computing.

Using Python, we have implemented the framework PySE (Python Stencil
Environment) for solving PDEs using the Finite Difference Method (FDM). By
creating a set of high-level abstractions, PySE allows the user to both specify
the problem and implement numerical solutions on a high level. In order to
move the focus of the user away from the details of the implementation towards
the problems and the solution methods, it has been a goal for our design that
code should be as close to pseudo code as possible. Our target audience are
researchers who need to prototype FDM solvers, and want to play with the
FDM or the numerical methods used to solve the resulting discrete problem.

Due to its design, numerical computations carried out in Python will usually
be much slower than the same computations implemented in low-level languages
such as C and Fortran [5]. As discussed in e.g., [16], a large part of the code
for PDE solvers deals with problem specification and various bookkeeping tasks.
For these parts of the code, efficiency is not important, and a high-level language
such as Python is very well-suited. However, there is a part of the code where
efficiency is important; the part of the solver where the numerical computations
are carried out. Better performance can be achieved by moving the time-critical
part of the code into extension modules for Python, implemented in a compiled
language. The extension modules can be either general purpose, like Numerical
Python (NumPy) [27], or custom-made for a particular application or library
function. In addition, parallel computing can be used to solve a problem faster
by spreading the workload over more than one computer. Both approaches are
used in PySE.

Ideally, the framework itself should take care of parallelization in such a way
that the user code does not need to change at all when moving from a sequential
to a parallel computer. If parallelization is performed manually, details of both
the problem and the environment in which the application will be run can be
taken into account in order to create an optimal parallel solver for the problem.
If the parallelization is handled automatically by the framework, some flexibility
(and perhaps performance) must be sacrificed. We believe, however, that the
benefits of automatic parallelization are more important for the experimental
researcher. Hence, we implement parallelization in PySE, in such a way that
the user code is left uncluttered.

We begin with a discussion on what kind of user interface a framework
for solving PDEs with FDM should have. Then we provide a few examples
of PySE in use. Then, we discuss the implementation in more detail to see
how the goals are achieved, before presenting some more involved case studies
with PySE. Finally, we offer concluding remarks and suggestions for the further
development of PySE.

2 Design of PySE

We want to design the user interface of our framework for solving PDEs such
that it is possible to work with FDM on a high level, without sacrificing flexibil-
ity. That is, it should be possible to describe a problem in as much detail as is
necessary, and the scientist should have full control over discretization and solu-
tion algorithms. When working with mathematics, the operators and symbols
of mathematics have a powerful “built-in” semantics. For example, an expres-
sion such as 7 = b — Az can result in quite different calculations, depending on
what the symbols represent. Therefore, it is fair to say that this is a high-level

from pyse import *

source function:
def f(x,y):
return math.sin(2*math.pi*x)

create a Grid, store the division (Ax):
g = Grid(domain=([0,1], [0,1]), division=(40,40))
g.dx

(=
I

build a FDM stencil:
fdm_stencil = Stencil(nsd=2, nodes = { \
(0,1): 1.0, \
(-1,0): 1.0, (0,0): -4.0, (1,0): 1.0, \
(0,-1): 1.0 })

create FDM operator (a StencilSet), and add the stencil:
A = StencilSet(g)
A.addStencil (fdm_stencil,g.innerPoints())

++

use a ‘‘zero-flux’’ Neumann boundary condition:
+= createNeumannBoundary(fdm_stencil, g, 0.0, g.range())

=

create fields for the source and the solution,
fill the source:

= Field(g)

LFi11(E)

= — (h%x2)

= Field(g)

e o T o # #

solve the problem, and plot the result:
solution = conjgrad(A, u, b, tolerance=0.005)
plot(solution)

Figure 1: Code for solving problem ().

7
-0
0

Figure 2: Stencil for the equation in inner nodes, (@)

representation. We seek the same behaviour for the user interface of PySE.
interface will be a set of classes and functions. The user should be able
to utilize the framework from both Python programs and interactive Python
sessions.
We consider that the important aspects of a utility or framework suitable
for high-level work with FDM solvers for PDEs can be summarized as follows:

e The problem can be specified in an intuitive and flexible way.
e The solution method can be implemented clearly and easily.

e Results and runtime statistics should be easily accessible for postprocess-
ing and analysis.

To address these aspects and discuss possible solutions for our framework, we
consider the following problem, which models stationary heat conduction, as an
illustrative test case:

—V?u = f, x €0
1
ou _y, x € 00 o
on

where 2 = [0,1] x [0, 1], the unit square in 2D, and 02 its boundary, and f
is a given function. Given the number n, a lattice grid of nodes (x;,y;) for
the domain (2 is created, where ¢ = 0,1,...,n, 7 = 0,1,...,n. The cell length
h=x; —x;—1 =y; — yi—1 = 1/n is assumed to be constant.

Using the standard centred differences for the second-order derivative in ()
yields

U j—1 + Ui—1,5 — 4ui7j + Uit + Ui 41 = _thi,ja t,i=12,....n—1 (2)

for the inner nodes in the domain, where u; ; = u(z;,y;) and fi; = f(2s,y;).

Along the boundaries, the Neumann boundary condition will be used to
eliminate values in the schema () falling outside the domain. For instance,
along the y,, boundary, a second-order approximation of the Neumann condition
yields

2ui,n_1 + Ui—1,n — 4ui,n + Uit1,n = _thi,n; i=1,2,...,n—1. (3)

To give an impression of what a solver implemented with the PySE frame-
work looks like, we show the code for solving problem (Il) when f = sin(27z),
in Figure [l

The equations (@) and @) relates a point to a few of its neighbours. It is
common to name these relations computational molecules or stencils [23, 9, [6].
A stencil can be visualized as in Figure[d and can be interpreted as the action of

D
D

N
>

N
>
N
>

MM M
AN ZAREAN VAN ¥

T
=

Iy

CanS

Figure 3: Grid for problem (). The green circles indicates nodes in stencils.

the PDE at a point. Usually, only a few neighbours are included in each stencil,
and the number of different stencils needed to specify the problem for the whole
domain is limited. Therefore, a convenient way to specify the FDM for the PDE
on a given grid is to specify the different stencils to be used, together with the
nodes in the grid where each stencil should be applied.

In FigureBlwe show two of the boundary stencils for the Neumann boundary
condition, as well as the shape of the stencil for the inner nodes.

Considering example ({ll) and the FDM form given in @), the specification
of the problem involves describing the lattice grid for the computational domain
and the discrete form of the PDE on that geometry. As outlined above, one way
of describing the discrete problem is in terms of the stencils, but there are other
ways. For instance, there are several tools [22, [, 10, [IT] that use specialized
languages, or a graphical interface, to specify the PDE, boundary conditions,
computational domain, and so on. Based on user input, a discrete problem
is generated in the tool, and solved. This offers a very high-level interface
for problem specification, and hides the details of discretization and solution
algorithms. We have chosen to use the stencil approach.

The set of stencils for a problem defines a linear operator for scalar fields
over the lattice grid for the problem. In the case that an explicit scheme is
used, an update of the solution can be computed by applying the operator to
the solution from the previous iteration. If the scheme is implicit, the stencils
formally define a generator of a linear system. However, by iterative methods,
the solution can be approximated using the operator, without forming the linear
system. Krylow methods [32, [2] are examples of such methods.

The set of stencils for a problem, defining the linear operator, should there-
fore be encapsulated in a single object. Each stencil should be paired with the
set of nodes in the grid, for which the stencil defines the action of the PDE. This
object can be used in both explicit and implicit solvers, as explained above.

The final step, postprocessing, will usually only involve analysis of the un-
knowns after the solver is finished, as well as statistics about error estimates and
the number of iterations stored during the solution process. As the unknowns
will be collected in some data structure, and other kinds of information may
conveniently be stored in some ready-made objects as well, this last part may
also be separated from the rest of the tasks through a clean interface. We have
not paid much attention to the matter of postprocessing in the early stages of

this framework. Only simple plotting capabilities are implemented.

2.1 Abstractions

From the example above, it is evident that the design of a set of abstractions
is crucial for achieving the user interface we want. Some of the abstractions
we have decided to implement may be common to other frameworks for solving
PDEs [7, 20, 18, 3, 28, B0} 23], in some cases with different names, while some
abstractions are unique to this framework.

We will focus on the following abstractions: Grid, Field, Stencil, and Sten-
cilSet.

2.1.1 Grid

Before we can apply the FDM to a given problem, we need to define the com-
putational domain, as well as a lattice grid covering the domain. This will
be the purpose of the Grid abstraction. Information about geometry, division
parameters for the lattice grid, and so on, will be contained in the grid.

Our Grid abstraction will only handle lattice grids, which can always be de-
scribed functionally, based on the geometry and the division parameters. Hence,
coordinates for all nodes in the grid will not be stored, thus reducing the memory
requirement of a grid significantly.

2.1.2 Field

We need to work with discrete approximations of the unknowns in the PDE.
These can be represented as fields over the grid. The current implementation
of Field is scalar, i.e., it stores one value for each node in the corresponding
grid. In the future, we may consider vector fields with more than one degree of
freedom in each node.

We are using a separate abstraction for scalar fields because we want to be
able to index the field in different ways, as well as perform certain operations
on fields. This will be discussed in Section B

2.1.3 Stencil

The Stencil is, together with StencilSet, the most important abstraction in our
framework. As explained above, the stencil defines the discrete approximation
of the PDE at one point of the grid. As the stencil will be the key component
used to specify a problem, the abstraction must have the following properties:

e A stencil should be easy to build by specifying the individual stencil nodes
and their coefficients.

e In addition to the offset nodes, the stencil should also contain an optional
source term.

e Both constant and variable, or functional, coefficients should be supported.
Functional coefficients should be evaluated by giving the coordinates of a
point as argument.

e It should be possible to add and subtract stencils, as well as multiply a
stencil with a scalar, in order to scale the stencil.

The first three points are important to give the user sufficient power to build the
stencils for the PDE. The last point enables the user to create complex stencils

| OV
[l NNVANERN V) P
0, ‘ ‘ 1,1
(!) Pany 1 L (’)
\N% | —p
I I
AN ‘
T ‘
I I
N ! ! N
\N% ; ; o
B N R (S O I S S SN I
| LN AN
I T\ (NN
I I
l l Pany
| | N\
I I S R O N IS s R
I I
I I
I I
I I
; ;
I I
))
I I
(0,0) | | (1,0)
L L

Figure 4: Grid for problem (@l). The red lines mark the partition for four
processors, while the dashed blue lines mark extent of ghost nodes. The green
circles indicate stencils (the blue circle is a ghost node), while the numbers in
brackets indicate the processor ID.

by first building simpler ones and later joining them together. It also gives the
flexibility of building a library of frequently used stencils, which can be adjusted
and combined to form the complete stencil for a particular problem. In the PySE
framework, we have a number of such predefined stencils; see section B.6.11

2.1.4 StencilSet

While the stencil describes the discrete approximation of the PDE for one node,
the operator defined by all stencils for the problem, describes the action of the
PDE problem, including the boundary conditions, for all nodes in the compu-
tational domain. We use the term StencilSet for this abstraction.

The stencilset is a container in which multiple stencils can be stored. To-
gether with each stencil, we store a description of a set of nodes in the grid,
where the stencil should be applied. Key features of the stencilset are as follows:

e Built by adding stencils and a specifications of set of nodes to the sten-
cilset.

e Operates on a field as a linear operator.

e Two stencilsets can be combined into one, in order to build one linear
operator from multiple stencilsets.

This design makes our framework very flexible. For instance, it is easy to im-
plement a solver for a problem with different conditions on different parts of the
boundary. It is also possible to implement a solver for a problem where different
PDEs govern different parts of the computational domain.

3 Automatic Parallelization

The process of creating a parallel solver by partitioning the problem is well
known in the literature, cf. [6, ch. 1.5]. Partitioning a problem can be a chal-
lenging task, and user interaction is usually required in the process. Our ap-
proach is, however, to implement the framework in such a way that a parallel

solver can be created from a sequential solver without any user interaction but a
call on the method that initializes parallelization. Because partitioning is done
automatically, we have to ensure that it is as optimal as possible. That is, each
subgrid should have approximately the same number of nodes and the commu-
nication cost should be minimized. Working with structured lattice grids, it is
relatively easy to fulfil the first requirement.

In Figure @l we show a grid partitioned for four processors, with some stencils
for a problem. In order to avoid communication each time a stencil is applied
at an internal boundary, it is common to enlarge each subpart of the grid with
a layer of “ghost nodes”, such that all required updates from a neighbour can be
made with one vector communication. The width of the ghost node layer will
be determined by the shape of the stencils. By inspecting the stencilset, we can
acquire information about the communication cost in each direction. Assume
that all stencils for a problem are combined into a single stencil - an aggregated
stencil. For each space dimension ¢ we define the communication cost value ¢; as
the width of the aggregated stencil in direction i. For a given number of space
dimensions k, the communication cost functional for one process will be

k
C(pik) =y 40)

=0 P

where n; is the number of nodes in direction i, and P = {p;}¥_, is the number
of subparts into which each direction should be split, such that Pr = [[, p; is
the total number of processes available. To obtain the optimal partition, we
minimize the functional @).

Before the presented algorithm can be used, the stencilset must be known.
Hence, there will be a sequential part of the code that must be executed before
the problem can be parallelized. The user should try to avoid creating fields
in this sequential part of the code, as such fields will be global and hence may
require a large amount of memory.

4 Experiments

Through examples, will now show how the framework can be used and study the
performance of implemented solvers. The presented code examples will include
details yet to be discussed, as details of the implementation will be addressed
in Section B

Example 1: Consider the heat flow problem

up(x,t) = uge(2,t), x € [0,1], t e RY, (5a)
&fl’t):f(x), z=0Az=1, teRT, (5b)
u(z,0) = g(x), x €10,1]. (5¢)

We apply centred differences for the space derivative in (Bal), and a forward
difference approximation for time, which yields the schema

At
wt =l Sy - 2uf) (©)

for the inner nodes. We show the Python code of a solver for this problem in
Figure B A few import statements for the PySE framework, and code for the
initial condition and the Neumann boundary condition functions are omitted.

g = Grid(domain=[0,1],division=n)
lap = Laplace(g)
id = Identity(g.nsd)
innerstencil = id + dt*lap
A = StencilSet(g)
innerindex = A.addStencil(innerstencil,g.innerPoints())
A += createNeumanBoundary(A[innerindex],g,nc)
g.partition(A) # partition if more than 1 cpu
u = Field(g)
u.fill(initc)
tc =0
while tc < T:
u = A(u)
tc += dt
u.plot(movie=’on’,title=’Heat transfer in 1D, t = %e’ % (tc))
plot(field=u,title=’Finish, Heat transfer in 1D’)

Figure 5: A simple example. The functions nc and initc are defined, T is the
end time, and dt is the timestep.

This code make use of two stencils that are predefined in the framework, the
Identity and Laplace stencils (see section BEI). The concepts of adding
stencils, and multiplying a stencil with a scalar, are used to form the complete
stencil for the problem. Note that the Ax appearing in (@) is incorporated in
the Laplace stencil, so we need only multiply by the time-step size At when we
build the complete stencil.

The expression u = A(u) in the code is the explicit time stepping, where the
stencilset is used as a linear operator on the solution from the previous iteration.

Example 2: Next, we consider the following problem:

ur =V - (k(z)Vu) + f, r €, teRY, (7a)

u(z,t) = h(x,t), x € 09, t € RY, (7b)

u(z,0) = g(x), x € Q. (7¢)
Assume that Q = [0,1] x [0,1], the unit square in 2D, is the computational

domain, and z = (z1,x2) is a point in 2D. We define the coefficient function
k(z), the source function f(x,t), the Dirichlet boundary condition A(z,t) and
the initial condition g(x) such that the analytical solution for the problem is

u(x,t) = e 'sin(mry) cos(ms) (8)

If we use a forward difference for the time derivative and centred difference for
the derivative in space in (Zal), we get

upht = Hikijo1ui j1 + kicija i1
+ (1/H — ki j_1ja — ki1/2,5 — Kiy1/2,5 — Kijy1/2)ui

+ ki+1/27jué+1,j + ki,j+1/2ué,j+1] + Atfil,ja 9)

where H = At/Ax?. Expressions such as k;_; /2,; indicate that the function

k(x) should be evaluated at the midpoint between x;_; ; and x; ;. If k(x) is
given as a scalar field over the grid, an average of k over the same segment can

build the stencil

= Stencil(nsd=2,varcoeff=True,source=dt_f)

.addNode ((0,-1), [lambda x: Hxk_p(x)])

.addNode((-1,0), [lambda x: Hxk_p(x)]1)

.addNode ((0,0),[lambda x: 1.0 - 2.0xH*(k_m(x) + k_p(x))1)
.addNode((1,0), [lambda x: H*k_m(x)])
.addNode((0,1),[lambda x: H*k_m(x)])

n n n n n n H

bs = DirichletBoundary(2,bf)

A = StencilSet(g)
A.addStencil(s,g.innerPoints())
A.addStencil(bs,g.boundary())

Figure 6: Code for building the stencils for problem ([Za)).

cpus: | 1t | 2 | 4 | 8 | 16 | 24 | 32
1000 x 1000, 160 step: [| 7984 | 3969 [1998 | 996.6 | 498.5 | 332.0 | 249.3
speed—up: 1 2.01 | 3.99 | 8.01 16.0 | 24.0 | 32.0
1500 x 1500, 240 step: [| 26820 | 13460 | 6728 | 3373 | 1681 | 1125 | 838.8
speed-up: 1 1.99 [398 | 7.95 | 15.9 | 23.8 | 319

Table 1: CPU time in seconds and corresponding speed-up numbers for the heat
conduction solver.

be used instead. The complete code for this example is included in Appendix [Al
In Figure @, we show the part of the code that builds the stencils. In this case,
we cannot use predefined stencils from the framework, but have to build them
manually. The function k_p(x) in the code, is k(z) + Az/2 , while k_m(x) is
k(z) — Ax/2.

In Table [, we list the CPU time for the solver when run on an Itanium-IT
based linux clustexﬁ, for different numbers of processors and two different grid
sizes. We also list the speed-up numbers. We have only measured the time
of the main computational loop over all time steps (the timeloop), excluding
startup and initialization costs. Parallelization works quite well in that we can
see close to linear speed up. From previous experiences with Python, we expect
the solver to run quite slowly. For comparison, we have therefore implemented
a scalar solver for the same problem in C. This solver has almost no flexibility
at all, can only solve this particular problem, and therefore is supposed to give
close to optimal efficiency. In Table Bl we show the CPU time for the solver
implemented in C, as well as speed-up numbers relative to the Python solver.
The C-solver running on one processor performs about 75 times faster than
the Python solver running on one processor, and also performs about 2.3 times
faster than the Python solver running on 32 processors.

While 75 times slower than C is a substantial performance hit for the Python
solver, the gain in flexibility is significant. In addition, the Python performance
may be suitable for a range of applications, such as experiments with sten-
cils, prototyping of solvers and smaller problems. However, to solve large scale

Tinux cluster: 24 dual HP RX2600 1.3GHz Ttanium-IT computers, 4GB memory each,
Gigabit ethernet network. All CPU time measurements in this paper are performed on this
system.

10

Problem size | runtime | 1-cpu Python / C | 32-cpu Python / C

1000 x 1000, 160 steps: 107.3 74.4 2.32

1500 x 1500, 240 steps: 362.4 74.0 2.31

Table 2: CPU time in seconds for the solver implemented in C, as well as
speed—up relative to the Python solver running on one and 32 processors.

Problem size || C |Pyth0n
1000 x 1000, 160 time steps: || 34.5 | 30.5

Table 3: Timing of the computational loop for an experiment with only space-
dependent source and Dirichlet boundary condition functions. The numbers are
CPU time in seconds.

problems the user needs better performance. After discussing PySE in greater
detail, we will return to this experiment and show how better performance can
be achieved.

In the example discussed here, both the source function and the Dirichlet
boundary condition are time-dependent. These functions are implemented as
standard Python functions, and must to be executed for all relevant nodes at
each timestep. This is a major performance bottleneck of the solver. Con-
sider instead the problem where the Dirichlet and source functions are space-
dependent only. If the CPU time of the timeloop is measured, we get the
numbers given in Table Bl In this case, the Python simulator is actually faster
than the authors’ hand-implemented C simulator. It should be noted that the
initialization phase, which is omitted in this timing, is significantly longer for
the Python simulator than the C simulator, but this is of less importance when
the simulator runs for a long time. We conclude that the need to call the source
and Dirichlet functions inside the time loop for all relevant nodes constitutes
the main bottleneck of the current implementation. This issue will be addressed
in Section Al

5 PySE overview

In the following sections, we provide an overview of the classes and functions
implemented in PySE. We constrain ourself to discussing the basic public user
interface of the framework. In Sections .64 and B3 we discuss some of the
more advanced parts of PySE. A discussion of tools that are mainly for internal
use are beyond the scope of this text.

Above, we discussed the key abstractions in PySE. These abstractions are
realized as classes in Python. Consequently, there are classes named Grid,
Field, Stencil and StencilSet. In addition, PySE consists of a set of utility
classes and functions. For parts of this discussion, a general understanding of
“special methods” and operator overloading in Python, will be beneficial. For
an overview of this topic, please refer to, for instance, [31}, sec. 3.3] or [21], p.
90-99].

5.1 Grid

The class Grid contains a description of the computational domain, as well as
how this should be covered with a lattice grid. Currently, “box-shaped” domains

11

[l’maX7 ymax]

(0,m) (n,m)
Azx Ay

(0,0) (n,0)

[Zmin, Ymin]

Figure 7: A 2D lattice grid

in any number of space dimensions are supported. An example in 2D is given
in Figure [l To describe the grid fully, [Zmin, Ymin), [Tmax;Ymax), and either
(Az, Ay) or (n,m) must be known. The constructor, __init__, of the Grid
class takes the geometry information and the number of divisions as arguments,
together with the number of space dimensions:

—-—

g = Grid(domain=([0,1],[0,2]), division=[50,100])

The geometry information is given as ([Zmin, Zmax]s [Ymin, Ymax])- The division
parameter can also be given as a single integer:

g = Grid(domain=([0,1],[0,2]),division=100) .

In that case, each dimension will be divided by the same number. The general-
ization to n dimensions is straightforward.
The most important members and meth-

ods of Grid are listed in Figure[® Note that)

we store the Ax, Ay, ... values as a list in the Grid

member division. In addition, the division |Members:

parameters are directly available as dx, dy, | nsd: number of space dimensions
and dz for grids in one, two and three space | givision: list, length=nsd
dimensions, as this is often needed in the nu- | geometry: list, length=nsd
merical algorithms. fields: list of field-references

As discussed in Section EZT.4] each sten-
cil in a stencilset needs a description of a |Methods:
set of nodes in the grid where the stencil | __init__(div,nsd,geo) : constructor
should be applied. The purpose of the meth-
ods corners, boundary, and innerPoints
in Grid is to provide such descriptions. For
instance, innerPoints(): returns iterator

corners(): returns iterator

boundary(): returns iterator

g.innerPoints 0O range(): returns index-range

partition(stencillist): parallelize grid
will give an dterator |21}, p. 55] for the in- and attached fields.

dices of all inner nodes in the grid. Similarly,
boundary and cormers give the indices for
boundary and corner nodes, respectively. It Figure 8: Outline of the Grid
should be noted that only nodes that are on class.

12

the physical boundary are considered boundary nodes and that interior nodes,
as returned by innerPoints, are the complement to the boundary. Support for
higher-order methods is something that will be considered for further develop-
ment. The methods innerPoints and boundary accept an argument region
that can be specified to select a subset of the domain. The argument should
be given in the same form as the geometry, and if it is not present, the whole
grid is assumed. The boundary method can, in addition, create an iterator for
nodes inside or outside a circle with a given centre and radius. More examples
of the use of these methods will be given in the case studies in Section [but
to indicate the syntax we provide one example here, a circle on the x—y face of
a 3D domain:

g.boundary(region=([-1,1],[-1,1],[0,0]), type=’circle’,\
center=(0,0,0), radius=0.5, direction=’in?)

The method range gives the index range for nodes in the grid. For the grid
in Figure[d for instance, g.range() returns the list [(0,0), (n,m)].
The last method in Figure B is partition. The line

g.partition(stencilset)

in a solver partitions the grid for parallel computations, based on the instance
of stencilset given as argument. In addition, all fields defined over the grid,
which are referenced in the member fields, will be parallelized by the method.
Finally, the stencilset given as argument will be modified according to the par-
allelization of the grid. In effect, this single method invocation is the only user
interface to parallel computing in PySE.

5.2 Stencil

The members and methods in the class Stencil are outlined in Figure @l The
basic version of the constructor for a stencil object accepts three arguments:

s_f = Stencil(nsd=2, varcoeff=False, source=0.0)

The arguments given here are also the default arguments for the constructor,
and can therefore be omitted.

Here, a two-dimensional stencil with
fixed coeflicient, varcoeff=False, and a .
source term of 0.0 is created. If variable Stencil
coefficients are requested, the source term | Members:
can be given as a function as well: nsd: number of space dimensions

def sourcefunc(x, y) . varcoeff: True/False - var. coefficients

return sin(x)*cos(y) source: Source value/function
stencil_coeff: dictionary

s_v = Stencil(2,True,sourcefunc)

Methods:

Nodes can be added to a stencil in | init__(nsd,varcoeff,source, nodes)
two ways, directly on instantiation using
the nodes keyword argument, or with the
addNode method. The node is specified as
an offset tuple, and the coefficient is given
as either a scalar value or a function:

addNode(index,value): add node

addSource(value): add source

_ _add_ _(stencil): add operator

_ _sub_ _(stencil): subtract operator

_ _iadd_ _(stencil): inplace-add

s_f = Stencil(nsd=2, nodes = {\ __rmul__(val): multiply with scalar
(0,1): 1.0,\ convert_to_varcoeff()

13 Figure 9: Outline of the Stencil
class.

(-1,0): 1.0, (0,0): -4.0, (1,0): 1.0\
0,-1): 1.0
s_f.addNode((1,1),1.0)

variable coefficients:
s_v.addNode((0,1) ,some_function)

The nodes argument should be specified
using the syntax of Python dictionaries.

As shown in Figure @, Stencil sup-
ports addition, subtraction and in—place addition operators with another sten-
cil, implemented with the special methods [21), p. 90] __add__, __sub__, and
__iadd__. Also, a stencil can be scaled by multiplication with a scalar, imple-
mented with __rmul__.

Finally, an instance of Stencil with fixed coefficients may be converted to a
variable coeflicients stencil at any time,using the method convert_to_varcoeff,
but the converse is not possible.

5.3 StencilSet

Although StencilSet probably is the most important abstraction in our frame-
work, the implementation of the class is rather short and straightforward. From
the point of view of implementation, it is basically a placeholder for stencils
equipped with a limited set of operators. An outline of the class is shown in
Figure [0

The constructor of StencilSet takes one argument, a grid:

Grid((n,m), [(0,1),(0,1)1)
StencilSet(g)

g
A

The method addStencil is used to add stencils and the accompanying iterators
to an instance of StencilSet. Suitable iterators can be obtained from the
methods on the grid instance:

is = A.addStencil(i_s,g.innerPoints())
bs = A.addStencil(b_s,g.boundary())

The value returned by addStencil is an integer index value, which can be
used later on to retrieve a reference to the added stencil from the stencilset. For
this purpose, StencilSet implementes the special methods __getitem__ and

__setitem__ [21} p. 96], which allows square bracket operators to be used with
instances of StencilSet:

old_stencil = A[is]
Alis] = new_stencil

The most important operator supported
by StencilSet is the “call” operator. The
“call” operator implemented with the special
__call__method is a feature of object orien-
tation in Python which makes an instance of
the class behave like a function. This is used

StencilList

Members:
grid: reference to a grid

collection: list of stencils

to implement the linear operator behaviour
of the stencilset. Let A be an instance of
StencilSet, and u be an instance of Field.
The user can use the syntax A(u) to call

14

where: list of iterators
Methods:

_ _init_ _(grid) : constructor

addStencil(st,it): add stencil and
iterator

_ _call__(field): apply to field

_ _iadd_ _(stencillist): inplace-add
_ _mul__(field): alias for call

_ _getitem_ _(index): get stencil for
index
_ _setitem_ _(index,st): replace stencil
for index.

__call__ with u as argument. This opera-
tor walks through the list of stencils and, for
each of them, applies the stencil at each node
given by the corresponding iterator. When
there are variable coefficients, and when the
coeflicient for a stencil node contains more
than one function, all functions are evalu-
ated with the coordinates for the current
grid node as argument. The results are then
added together and multiplied by the value
of the field in the given node. The imple-
mented “call” operator supports only Field
as operand.

To be more exact, the set of stencils and iterators in the stencilset is only tra-
versed on the first invocation. For subsequent calls, the information is assembled
in a sparse matrix structure, which can be applied directly to fields, thus yield-
ing fast operations. If any coefficient or source function needs to be updated, for
instance due to time dependency, the matrix structure needs to be reassembled.
The methods updateDataStructures and updateSourceDataStructures set
a flag in the stencilset instance that triggers reassembling of either all data or
data for source functions only, on the next invocation of the call operator.

The arithmetic multiplication operator *, implemented with the special
method __mul__ is an alias for the call operator. The reason for this is that in
the context of, e.g., iterative methods such as Krylow solvers, it is common to
write A*u, thus keeping the matrix-vector analogy in the syntax.

The last method mentioned in Figure [[0 is __iadd__. This implements
the in-place arithmetic addition, +=, operator, which is used to combine two
instances of StencilSet into one object:

A = StencilSet(g)
add stencils to A

B = StencilSet(g)
add stencils to B

Add B into A:
A += B

A common usage of this operator will be seen in Section BL.6.2

5.4 Field

As described above, Field is used to hold scalar fields over grids. To hold the
numbers, Field uses a one-dimensional NumPy array, stored in the member
data. The instance of Grid that the field is defined for is stored in grid. In the
case that the dimension of the grid is larger than one, the reshape functionality in
NumPy is used to create an auxiliary data structure shapedata that references
the data array, but can be indexed with multidimensional indices according
to the grid. Arithmetic operations can be carried out more efficiently on the
one-dimensional data, while a multidimensional structure is convenient when
working with the stencils. The members and methods of Field are outlined in
Figure 1
The constructor in Field takes an instance of grid as argument:

g = Grid((n,m),[(0,1),(0,1)])

15

f = Field(g)

Field supports a collection of operators
commonly used for vectors. Vector opera- :
tions on fields are carried out directly on Field
the underlying NumPy array, using efficient | Members:
operators implemented in NumPy. These | gata: numeric array, 1D
operators include addition, subtraction, and
pointwise multiplication with another Field,
and multiplication with a scalar. All these
operations are implemented with the corre-
sponding special methods, as seen in Fig-
ure [l and hence called using the common
arithmetic operators:

shapedata: reference to data

grid: reference to grid

Methods:

_ _init_ _(grid) : constructor
fill(func): fill with values from func.
inner(field): innerproduct

plot(): create 2D/3D plot

f1 = Field(g) _ _setitem_ _(index,val): set value

£2 = Field(g) _ _getitem_ _(index): get value

= f14+£2; £ = £1-£2; £ = £1%£2 __add_ _(field): add operator

f = 5.6%f1 _ _sub_ _(field): subtract operator

Square bracket notation can be used to ac- | __mul__(val): multiply operator

quire and set values for individual nodes. __rmul__(val): multiply w. scalar
There are three more methods in Fig- as left operand.

ure [[1l First, there is £i11, which fills the
field with values based on a function:

Figure 11: Outline of the Field

def initfunc(x,y):
class.

return sin(x)x*cos(y)
f.£fi11(initfunc)

The argument to the supplied function will be coordinates for each node in the
grid, given as a list. Note that the coordinates will also be given as a list for one-
dimensional grids. Further, instances of Field have the method inner, which
computes the inner product of two fields, and plot, which creates a graphical
plot for one- or two-dimensional fields.

5.5 Parallelization

A parallel infrastructure is necessary in order to utilize a parallel computer.
There are several different approaches to implementing parallelism; see e.g. [12,
33, 4, [16]. In PySE we have used the de facto standard for parallel comput-
ing, MPI [T3| 29, 25], which is widely available and used. There are several
Python modules that provides wrappers to MPI; some of them are pyMPI [24],
mpidpy [§], Scientific. MPI [I5], and Pypar [26]. Based on its simplicity and
its ability to communicate numerical arrays in a very efficient manner, we have
chosen to use Pypar. Pypar only implements a limited, but important, subset of
MPI. For instance, nonblocking send and receive is not implemented. Also, it is
not possible to use MPI communicators with Pypar. However, for our project,
it is well-suited.

As the actual implementation of the automatic parallelization is quite in-
volved, and also never exposed to the user directly, we do not here include a
discussion of this topic.

5.6 Implemented functions and tools

We will now discuss some of the other tools that are implemented in the frame-
work. This includes some implemented stencils, some iterative solvers, and a

16

<

Figure 12: A stencil modified for a Neumann boundary condition.

tool for implementing Neumann boundary conditions. These tools are both of-
ten used, and can serve as examples of how PySE can be used. Finally, we also
discuss the iterators to be used in stencilsets.

5.6.1 Stencils

Four stencils are implemented: an identity stencil, a stencil for the Laplace oper-
ator, a modified Laplace stencil, and a stencil for Dirichlet boundary conditions.
All stencils are implemented as subclasses of the Stencil class.

The class Identity implements a stencil with the coefficient 1.0 in the centre
as the only node. The constructor takes a single parameter, the number of space
dimensions.

The discrete Laplace operator, which results from using centred differences
on the Laplace operator V2, is often encountered in applications. The discrete
form depends on the division parameter of the grid as well as the number of
space dimensions. We have implemented a Laplace class that builds the stencil
for the Laplace operator in any number of space dimensions, where the division
parameter in the grid may be different for each dimension. An instance of grid
is the required argument for the constructor.

The class LaplaceJ implements a version of the discrete Laplace operator
where the coefficient for the centre node is zero, and the other coefficients are
multiplied with the inverse of the coefficient for the centre node in the regular
discrete Laplace operator. This is, for instance, the stencil that will appear when
a Jacobi iteration is applied to the scheme for the Laplace equation V2u = f,
as given in (@).

The last stencil we have implemented is a Dirichlet boundary condition,
in the class DirichletBoundary. This is a stencil that does not have nodes,
but does have a nonzero source term that represents the essential boundary
condition. Hence, the arguments to the constructor are the number of space
dimensions and the boundary condition, as a function.

5.6.2 Neumann Boundary Conditions

While in principle easy, the implementation of a Neumann boundary condition
can be challenging, at least for multiple dimensions. The Neumann condition is
interpreted as an auxiliary condition used to eliminate nodes that fall outside the
computational domain, from stencils at the boundary, as discussed in Section A
Which nodes, and even the number of nodes, to be eliminated, varies for the

17

def jacobi(A, x, b, tolerance=1.0E-05, relativeconv=False):

r =b - Axx
Xn=x+r1
r0 = inner(r,r)

if relativeconv:

tolerance *= sqrt(inner(b,b))
while sqrt(r0) > tolerance:

Xp = Xn

r =b - Axxp

Xn = xXp +r

r0 = inner(r,r)
return xn

Figure 13: Code for the Jacobi iteration

different parts of the boundary, and so it is a complex task to implement the
stencils for the Neumann condition and the iterators that are needed for each of
them. Figure[[2 shows three different example boundary stencils, for the upper
boundary, the right boundary, and the lower left corner. As we see, one node is
removed from the upper boundary stencil, another one from the right boundary
stencil, while two nodes are removed from the corner stencil.

To simplify this task, a function with the name createNeumannBoundary is
implemented. This function creates a set of stencils together with the accom-
panying iterators, which implements the Neumann condition on a part, or the
whole boundary, of a grid. The stencil that should be modified at the boundary
must be given as an argument to the create function. Further, it needs a grid,
the Neumann condition as a constant or a function, and a specification of the
boundary. The boundary should be specified as for the boundary method in
Grid. The create function returns a new stencilset with all the modified stencils
and their iterators. The boundary specification can be used to select a part of
the boundary of the grid where the condition should be used. In this way, differ-
ent boundary conditions can be implemented on different parts of the boundary.
Examples will be provided in the case studies in Section B

The stencilset produced by createNeumannBoundary can either be added
to another stencilset, which contains stencils for the rest of the domain, or
stencils and iterators for other parts of the domain can be added to the produced
stencilset. The in-place addition operator on stencilset was created for the
purpose of adding this created stencilset to another existing stencilset in theuser
code.

5.6.3 Implemented Solvers

Regarding direct or explicit solvers, there is really nothing to implement, because
a step or an iteration in an explicit method will simply apply the stencilset to
some field of unknowns. An example of a direct solver was given in Section H

There are two iterative solvers implemented in the framework: the Ja-
cobi iteration and the Conjugate Gradient iteration, available as the functions
Jacobi. jacobi and ConjGrad.conjgrad. Note that these solvers are provided
as examples of how linear solvers can be implemented in Python in general and
PySE in particular. Most real-world application will require preconditioning of
the linear system, which is not implemented in these examples.

In Figure [[3 we show the code for the Jacobi iteration. Given a stencilset

18

def conjgrad(A, x, b, tolerance=1.0E-05, relativeconv=False):
r =b - Axx
p = r.copy()
r0 = inner(r,r)
if relativeconv:
tolerance *= sqrt(inner(b,b))
while sqrt(r0) > tolerance:

w = A*p
a = r0/inner(p,w)
X = X + axp

T =T - axw
rl = inner(r,r)
p =1 + (r1/r0)*p
r0 = ril
return x

Figure 14: Code for the Conjugate Gradient iteration

A, a field for the initial guess of the solution, x, and a field for the right-hand
side in the problem, b, the Jacobi iteration is performed in order to find an
approximate solution for x. A convergence criterion can be specified as a fourth
argument or with the keyword tolerance. There is also a choice of using a
relative convergence criterion, by setting the flag relativeconv to True. In
that case, the norm of the residual is divided by the norm of the right-hand side
before being checked against the tolerance. The default values for the tolerance
and the relative convergence flag are 1.0e~® and False, respectively.

Remark that even though we are working with classes implemented in Python,
most of the arithmetic operations are carried out directly on the underlying
data arrays, where these operations are implemented in a low-level compiled
language, usually C. In this way, decent numerical efficiency can be achieved.
Also, note how uncluttered the implementation is. This is achieved by utilizing
the operator overloading concept that is common to object-oriented languages to
define the action of common arithmetic operators for any object. The dynamic
typing in Python is also an important factor.

In Figure [[4 we show the code for the Conjugate gradient solver, as imple-
mented in ConjGrad.conjgrad. The signature of the function is exactly the
same as for the Jacobi solver, such that the solvers can be interchanged.

There are two striking facts that should be mentioned regarding the codes in
Figure[[3 and [[4 First, it is worthwhile to note the resemblance of the code to
pseudo code. Although what we show here is real, working code as implemented
in the framework, it looks very much like pseudo code for the same algorithms
in any textbook. The importance of this is that the code is easy to understand,
and that it is quite easy to implement other solvers if you have pseudo code for
the algorithm available, as an almost line by line translation to Python code
is possible. The second point is that there is no reference to parallelism in
the code. As the components used are inherently parallel, there is no need to
consider parallelism explicitly in the solvers.

Finally, we would like to remark that although the object A was supposed to
be a stencilset and the objects x and b fields, there is nothing in the implemented
solvers that require this. Any objects that support the arithmetic operations
used, as well as the inner product and the copy operations, can be used with the
solvers. Hence, if A is a matrix and x and b are vectors, the same solvers can be

19

Create an iterator for the set (0,0) - (4,4):
ti = tuplelterator(2,(0,0), (4,4))

Usage:

for i in ti:
print i

Generates (0,0), (1,0),..., (0,1), (1,1),...,(4,4)

Create an iterator for the plane (1,1,0) - (3,3,0):
ti = tuplelterator(3,(1,1,0),(3,3,0))

Figure 15: Create and use a tupleIterator

used directly in a scalar context. In a parallel context, only the parallel versions
of A*x and the inner product must be implemented before the solvers can be
used with matrix and vectors in this case. This is a feature made possible by
using a dynamically-typed language such as Python.

5.6.4 Implementation of Iterators

In the Utils module of PySE we have implemented a few more useful tools.
The most important are the iterators we use in stencilsets to describe sets of
indices in grids where a stencil should be applied.

Flexibility regarding how stencilsets can be created is one of the main strengths
of our framework, because it offers a powerful tool for specifying and solving a
large class of problems. It can be a difficult task to select a subset of indices
from the lattice grid for a stencil, at least in the multidimensional case, when
a nontrivial subset is called for. Hence, we have implemented a set of iterator
classes that should give the required flexibility, while maintaining a relatively
simple user interface. In addition, the iterators we have implemented handle
the requirements of parallelization. The implemented iterators are the basis for
the methods in Grid that return sets of indices (see Section B.1I), and for the
createNeumannBoundary function. For a large range of cases, these methods
should be sufficient, but for even more flexibility, the classes presented here can
be used directly. For the examples presented in this paper, we will adhere to
the interface provided by Grid and the create function for Neumann conditions.

There are four different iterators implemented in the Utils module. First,
there is a general class named tupleIterator, which is used by the other more
specialized iterators, but can also be used directly. The name reflects the fact
that the elements produced are indices given as tuples. Figure [[H] shows how a
tupleIlterator is created, as well as sample usage. Arguments are the number
of space dimensions and the range of the tuples generated, specified by the
minimum and maximum corners. Using tupleIterator, the user can generate
tuples for any “box-shaped” region in a grid, in order to assign a particular
stencil to this region. The dimension of the “box” does not need to be the same
as that of the grid; a 2D region in a 3D grid can be selected by letting any
number of values in the minimum and maximum corners specified be the same.
An example is shown in Figure [[H where a region in the x-y plane (z=0) is
selected in terms of 3D indices, which could be used to select a region from a
3D grid.

In addition to tupleIterator, the following iterator classed are imple-

20

mented: innerTuplelterator for inner nodes, boundaryTupleIterator for
boundary nodes and cornerTupleIterator for corner nodes. The signature for
the constructor is the same for all these iterators; the number of space dimen-
sions, the minimum tuple, and the maximum tuple.

Finally, there is a special iterator implemented for circular regions. This
iterator is special in that it wraps any of the other iterators, and restricts the
indices to those either outside or inside a circle or sphere with given radius and
centre. While all the other iterators only produce sets of indices, the circle
iterator needs to relate to some grid, in order to compute the distance between
a given point and the centre of the circle. The class is named circleIterator,
and the constructor requires four arguments: an iterator providing the indices,
a grid, the center, and the radius. In addition, the direction can be specified as
either ?in’ or ’out’, ’in’ is the default.

6 Case studies

We now present three cases that provide a better understanding of how PySE
can be used. In the first case, we investigate the convergence order of different
finite difference schemes for a wave equation in two space dimensions. The
second case concerns another application of the wave equation in the simulation
of ultrasonic acoustical waves, commonly known as ultrasound. In this case, the
wave equation is solved in three space dimensions. In the last case, we revisit the
heat conduction problem in equations ([aHZd) with more focus on performance.

6.1 Wave equation in 2D - a convergence study
Consider the wave equation:
uy = VZu, (z,t) € QA x RT,
u(z,0) = f(z), =, (10)
u(z,0) =0, z€Q.

Boundary conditions in our experiments will be either the homogeneous Dirich-
let condition,

u(z,t) =0, (z,t) €00 xR, (11)
or the homogeneous Neumann condition,

Ou(x,t

% =0, (z,t) €90 xR (12)
Further, we assume that Q = [—1,1] x [—1,1]. Using a second-order difference

in time, we obtain the semi-discrete form:

un+1 — 2u" + unfl
At?

= V", (13)
which gives the explicit scheme
u" Tt = 2u" — " 4 AP Lau™. (14)

Here, Lau represents the discretization of the Laplace operator.

If we apply the centred difference for the Laplace operator, as we did for the
heat conduction discussed in Section B (see e.g., equation (@), the error should
theoretically be of second order in time and space, e = O(At?, h?). Here, and
in the rest of this section, we assume h = Ax = Ay. By instead using a 9-point

21

8-
@9—F)—2y

30

Figure 16: 9-point stencil of the compact fourth-order scheme for the Laplace
operator in 2D.

scheme for the Laplace operator (see [19, ch. 7.3]), we obtain theoretically a
scheme with error e = O(At2, h*). The coefficients in the 9-point stencil will be
as in Figure [0

Convergence for the problem can be improved even further by using a higher-
order method for the time derivative. We will use a fourth-order Nystrém
method [T4] ch. II.14] for the time derivative in order to get an error estimate
e = O(At*, h%).

For the problem with a Dirichlet boundary condition we expect to see close to
optimal convergence order in the experiments. For the problem with a Neumann
boundary condition, we will use the createNeumannBoundary function in PySE,
which implements a second-order approximation of the boundary condition.
Hence, theoretically, we obtain a second-order scheme for the whole domain,
even if a fourth-order 9-point scheme is used for the inner nodes in the domain.

For both the Dirichlet and Neumann boundary condition cases, we can
choose the analytical solution of ([[{), and derive the initial function f(z) and
the boundary condition. The error can then be computed as the sum over all
time steps of the discrete Lo norm of the difference between the analytical and
approximative solutions, multiplied with At,

e= (Atz h2 Z(u;jj —al;)?)t2
n]

Here, u; ; is the approximation of the solution and a; ; is the analytical solution
in the nodes of the grid. The error estimate for our problem can be written in

the form
e = AAt® + BhP.

If we assume a = 2 and 3 = 4, and choose At < h?, we get
e = AAt? + Bh* = A(h*)? + Bh* = Ch*.

Hence, if At is chosen such that At < h2, we expect to observe fourth-order con-
vergence when a fourth-order approximation is used in space, even if a second-
order scheme is used for the time derivative. For second-order approximation
in both space and time, we get

e =Ch?

by choosing At < h, and hence we expect to observe second-order convergence
in this case. In the same way, fourth-order convergence is expected for the

22

h | 5pt | 9pt | 9pt+N

1.6e-01 1.085e-08 | 1.073e-09 | 1.073e-09
8.0e-02 3.211e-09 | 1.218e-10 | 1.218e-10
4.0e-02 8.232e-10 | 8.068e-12 | 8.067e-12
2.0e-02 2.071e-10 | 5.110e-13 | 5.103e-13
Least square fit, C: || 4.22e-07 | 1.41e-06 | 1.41e-06
Least square fit, a: 1.9 3.8 3.8

Table 4: Error and convergence rate for the wave equation with Dirichlet bound-
ary condition, with At = 2.5e¢ — 05, such that At < h? for the smallest h. Eight
time steps performed.

h | 5pt | 9pt |9pt+N
1.6e-01 1.068e-03 | 1.063e-04 | 1.062e-04
8.0e-02 3.153e-04 | 1.273e-05 | 1.220e-05
4.0e-02 8.032e-05 | 1.541e-06 | 8.504e-07
2.0e-02 1.973e-05 | 7.980e-07 | 6.461e-08

Least square fit, C: || 4.30e-02 | 7.63e-03 | 1.08e-01
Least square fit, a: 2.0 2.5 3.7

Table 5: Error and convergence rate for the wave equation with Dirichlet bound-
ary condition, with At = 2.5e¢ — 03, such that At < h for the smallest h. Eight
time steps performed.

O(At*, h*) scheme, which is obtained by combining the 9-point scheme in space
with a fourth-order Nystrém method in time.
Based on the discussion above, we we assume an error model of the form

e =Ch®

for our experiments, and use a linear least square fit to compute C and « from
the experimental data. We use the following labels for the experiments: 5-pt for
the scheme based on the centered difference in time and the 5-point stencil for
Laplace, 9-pt for the scheme based on the 9-point stencil for Laplace and the
same difference in time, and 9-pt + N denotes that the fourth-order Nystrom
scheme in time and the 9-point stencil for Laplace is used. The results of our
experiments are given in Tables HIfl As expected for the Dirichlet boundary
condition problem, we get close to second-order convergence for the 5-pt scheme
when At < h, and fourth-order convergence for 9-pt and 9-pt + N when At < h2.
For 9-pt + N we get close to fourth-order convergence also when At < h for the
Dirichlet problem, while the convergence rate of 9-pt is close to 2 in this case.

The convergence rate for the Neumann boundary condition problem de-
grades for the schemes using fourth-order approximation in space, because the
Neumann condition is implemented with only a second-order approximation.
However, it is interesting to observe that we get third-order convergence for
both 9-pt and 9-pt + N in this case whenever At < h. This indicates that
the second-order approximation of the Neumann boundary condition does not
degrade the convergence order as much as the theory suggests.

23

h | 5pt | 9pt | 9pt+N

1.6e-01 1.252e-08 | 2.008¢-09 | 2.008e-09
8.0e-02 3.468e-09 | 3.307e-10 | 3.307e-10
4.0e-02 8.562e-10 | 4.217e-11 | 4.218e-11
2.0e-02 2.113e-10 | 5.309e-12 | 5.309e-12
Least square fit, C: || 5.38e-07 | 4.94e-07 | 4.94e-07
Least square fit, a: 2.0 2.9 2.9

Table 6: Error and convergence rate for the wave equation with Neumann
boundary condition, with At = 2.5¢ — 05, such that At < h? for the small-
est h. Eight time steps performed.

h | 5pt | 9pt |9pt+N
1.6e-01 1.233e-03 | 1.981e-04 | 1.980e-04
8.0e-02 3.405e-04 | 3.234e-05 | 3.204e-05
4.0e-02 8.354e-05 | 3.400e-06 | 3.724e-06
2.0e-02 2.012e-05 | 8.874e-07 | 3.330e-07

Least square fit, C: || 5.47e-02 | 2.83e-02 | 7.80e-02
Least square fit, a: 2.0 2.7 3.1

Table 7: Error and convergence rate for the wave equation with Neumann
boundary condition, with At = 2.5e — 03, such that At < h for the smallest h.
Eight time steps performed.

6.1.1 On implementation

Consider the discrete form given in (). This scheme can be rewritten as
u" = (24 AP La)u" —u ! (15)

In the examples we have seen so far, the stencilset has always operated on a
single field of unknown values, u"”, in order to compute an update, using either
explicit methods or an iterative solver. From (&) it is clear that we need to
work with two different versions of u, the current and the previous time step,
to compute values for the next time step. As a stencilset is only able to operate
on a single field, we need to use two stencilsets, one for the term 2+ At2L A and
one for —1. The following excerpt from the code shows the basis of the wave
solver:

g = Grid(domain=([-1,1],[-1,1]), division=[m.m])
A = StencilSet(g)
B = StencilSet(g)
lap_bpt = Stencil(nsd=2, \
nodes={ 0,1): 1., \
(-1,0): 1., (0,0): -4., (1,0): 1., \
(0,-1): 1.1
lap_9pt = Stencil(nsd=2, \
nodes={(-1,1): 1./6, (0,1): 2./3, (1,1): 1./6, \
(-1,0): 2./3, (0,0): -10./3, (1,0): 2./3, \

24

(-1,-1): 1./6, (0,-1): 2./3, (1,-1): 1./6})

The -1%uprev term:
uprev_stencil = Stencil(nsd=2, nodes={(0,0): -1.03})
A.addStencil (uprev_stencil,g.innerPoints())

The (2 + dt~2L) term:
u_stencil = Stencil(nsd=2, nodes={(0,0): 2.03})
if use_bpt:

fullu_stencil = u_stencil + (dt**2/g.dx**2)*lap_bpt
elif use_9pt:

fullu_stencil = u_stencil + (dt**2/g.dx**2)*lap_9pt
B.addStencil(fullu_stencil, g.innerPoints())

Go parallel on parallel computers: g.partition(B)
A.doInitParallel()

Assume u and uprev initialized according to # initial
conditions. rt = dt while rt < T:

unew = B(u) + A(uprev)

Increment time, and switch fields:

rt += dt

uprev = u

u = unew

In order to use a parallel computer, the call to partition on the Grid instance
is inserted as usual, with the stencilset B as argument. However, as there is
another stencilset in this problem, A, an explicit call to doInitParallel on
this stencilset is inserted as well. This is required, because there is no relation
between the stencilsets. This may change in the future.

The complete code for the simulator is more involved, because it contains
the option of selecting either Dirichlet or Neumann boundary conditions in the
simulation, as well as computation of the error norm. In addition, we discovered
during the process that the 9-point scheme for Laplace does not automatically
yield fourth-order convergence. In order to achieve fourth-order convergence,
the scheme must be applied to the modified equation

Muy = V3u (16)

where M is defined by the stencil shown in Figure [l According to [19], the
difference between the solution of ([[}) and ([If) is of order O(h*), so the solution

of (I8) should still give an error of fourth order when compared to analytical
solutions of (). By writing (IB) as

uy = M1V, (17)
we can proceed as before to obtain the discrete scheme
™t = 20" —u" T AP M T LU, (18)

As M~ is not known, and we generally avoid inverting a matrix directly, we
write the problem as

Mu" = 2Mu" + AL U™ — Mu"" (19)

Due to the M term on the left-hand side, this is no longer an explicit scheme.
Fortunately, the condition number of M is small, so the problem can be solved
effectively with both the Jacobi and Conjugate gradient solvers discussed in

Section B.6.3

25

b
B~~@
®

Figure 17: The averaging mass—stencil M that must be used together with the
9-point scheme for Laplace

6.2 Ultrasound

In [34], finite element simulation of ultrasound is discussed. For ultrasound
simulation in the human body, the finite element method can be beneficial due
to complex geometry of the body. However, for most of the examples presented
in [34], use of the finite element method is not a requirement. Therefore, we
want to implement a finite difference simulator for ultrasound in linear media,
using PySE.

The linear model for ultrasound is similar to the wave equation discussed in
the previous section:

uge(z,t) = *V3u(x, t), (z,t) € Q x RT,
u(z,0) =0, x €,
ug(z,0) =0, x €, (20)
u(z,t) = T(x,t), (z,t) € 907 x RT,
ou 10u 4
%——EE, (.Qi,t)GaQTc x R™.

Here, c is the speed of sound, 9Q7 is the region on the boundary for the trans-
ducer that generates the ultrasound waves, and T'(z) is the transducer function.
On the rest of the boundary, 9€Q2p., an absorbing boundary condition is used,
in the form of a Neumann condition.

The solver for the ultrasound problem is implemented along the same lines
as the wave equation discussed above, using the centered differences for the
Laplace operator, resulting in a 7-point stencil in three-dimensional space. For
the time derivative, the same centred difference as in ([Id) is used. New in this
problem is the mix of Dirichlet and Neumann conditions on different parts of
the boundary. In addition, the absorbing boundary condition includes the field
u, which means that we need some mechanism to include instances of Field in
the function supplied to createNeumannBoundary.

The transducer in our simulation is specified as a circle on the x-y face of
the domain, with centre in origin, and a given radius. We use a bessel function
as the generating function for the pressure distribution on the transducer, and
generate a given number of pulses on the transducer:

def transducerGenerator(a0, w, a, centre, radius, pulses, init_pressure):
def transducer(x,y,t):
if t < pulses*(1./w):
r = distance(centre, (x,y,0))
return init_pressure + aQO*sin(2*pi*w*t)*jO(a*r)

26

Solution domain 2

~&—_ Nonreflecting boundary Q7"

Op _ =10p
on ~ ¢ Ot
onr
4 dy WM Transducer
I _

on

Figure 18: Domain and boundary conditions for the Ultrasound experiment.
We show the x-z plane in this figure.

else:
return init_pressure
return transducer

rt = 0.0

transducer = transducerGenerator(tr_scale, w, tr_a, tr_center, tr_radius, \

tr_pulses, init_pressure)
transducer_now = lambda x,y,z: transducer(x,y,rt)
transducer_bc = DirichletBoundary(nsd=3, transducer_now)

We have implemented the transducer with a function that generates the
transducer function, based on the required parameters. When working in 3D,
the source function in the Dirichlet condition will be called with x, y, and z as
arguments. Our transducer is two-dimensional, and only need x and y, but in
addition the time must be given. Therefore, we wrap the generated transducer
function using a lambdd function, which throws away the z argument, and
instead supplies the time. For this to work, it is crucial that the time variable
used, rt, is updated in the time loop later on.

The absorbing boundary condition that we will use as the Neumann condi-
tion for the rest of the boundary includes the time derivative of the unknown

field: 5 16
U U
— = ——— Qrpe. 21
on cot’ € o (21)
By using a first-order difference for the time derivative, we obtain
aU/ 1 -1
= (y™ =), 22
on cAt (w" = u"™) (22)

We implement the boundary condition as shown in the following code:

Initialize a Field for the absorbing boundary

To be filled with u - uprev later on.

absorbing_bc_field = Field(g)

call_absbc = lambda x,y,z: (-1./(c*dt))* \
absorbing_bc_field.getValByPoint(x,y,z)

The method getValByPoint returns an approximate value for the field at the
given point. If the point matches an index in the field, the corresponding nodal
value is returned.

2lambda is a keyword in Python, which creates an anonymous function. Such anonymous
functions can be used exactly as other functions.

27

Assume that the stencilsets A and B are initialized with stencils for the inner
nodes as in Section LTIl We can then add boundary conditions as follows:

ez = 0.5xg.dz
front = ((-xmax,xmax), (-ymax,ymax),(0,0))
sides = ((-xmax,xmax), (-ymax,ymax) , (O+ez,zmax))

Set the transducer Dirichlet b.c.
B.addStencil (transducer_bc, g.boundary(region=front, type=’circle’,\
center=tr_center, radius=tr_radius, direction=’in?’))

Set the Neumann b.c.

B += createNeumannBoundary(fullu_stencil, g, call_absbc, \
region=front, type=’circle’, center=tr_center, radius=tr_radius,\
direction=’out’)

B += createNeumannBoundary(fullu_stencil, g, call_absbc, \
region=sides)

First, we set the transducer condition inside the circle that defines the trans-
ducer; then we set the absorbing boundary condition outside the same circle.
Finally, we set the absorbing boundary condition on the other sides of the do-
main. The main loop of the solver will be similar to the wave simulator in the
previous section:

Initialize fields:
uprev = Field(g)
uprev.fill(init_pressure)
u = 0.5*B(uprev)

Update the absorbing b.c. field:
absorbing_bc_field = u - uprev
B.updateDataStructures()
rt = dt
while rt < T:
unew = B(u) + A(uprev)
uprev = u
u = unew
update the absorbing b.c. field:
absorbing_bc_field = u - uprev
B.updateDataStructures()
rt += dt

The main difference between this solver, and the wave solver we have seen
before, is the call to updateDataStructures on the stencilset. As mentioned
in Section B3 we need to update data structures in the stencilset if any of the
coeflicient or source functions are time-dependent. Here, both the transducer
and the absorbing boundary condition are time-dependent. Note that there is
no need to call this method on the other stencilset, A, because there are no
time-dependent coefficient or source function in the stencils in that stencilset.

6.3 Heat conduction revisited

In Example 2 in Section H we studied the performance of a solver for heat
conduction. In Table] we saw that the C solver was significantly faster than
the Python solver, but we also saw in Table Bl where a problem without a

28

time-dependent source function was solved, that the C and Python solvers can
perform comparably.

We will now show how the original solver for the heat conduction problem
can be optimized. As the main bottleneck seems to be how the time-dependent
source function is handled, we focus on that first. In the original solver, we
included the source directly in the main stencil. Instead we can use a field for
the source. By modifying the source function such that it works with coordinate
vectors instead of points, we can use the functionality of NumPy to enter data
into the field efficiently. This is implemented in the £i11_vec method of Field.

The same trick can be used for the time-dependent Dirichlet boundary con-
dition. To improve the initialization time, we can also do this with the ini-
tial function. After implementing these changes, the stencilsets must also be
changed accordingly. But before we discuss those changes, we address another
potential performance bottleneck. The call operator of a stencilset, as in the
statement v = A(u), is basically a matrix-vector product, and also a vector-
vector addition, if any stencil in the set has a source. While the call operator
yields very nice syntax, there is some overhead in the creation of a new instance
of Field for the result, as well as in the copying of numerical arrays. In addi-
tion, given that the data is stored in a numerical array inside fields, we should
be able to use a more direct approach. For this purpose, Field implements
a method direct_matvec, which takes a numerical array as data, and returns
a numerical array. However, the use of this method does not ensure that the
stencilset operator works correctly in a parallel context. Therefore, Field also
implements the method updateField, which can be used to ensure consistency
manually on a parallel computer.

As before, the stencilset A will hold the main stencil for the problem for all
inner nodes, but the source function f is now removed from the stencil. We
want to create the stencilset S and B such that S can be applied to the source
field F and B to the boundary field bF, and the results added together with A(u)
to provide an update (with the original call syntax):

u = A(u) + S(F) + B(bF)

We can achieve this in the following way: S is the identity for all inner nodes,
and zero for boundary nodes, B is the identity for boundary nodes, and zero
for inner nodes, and A uses the problem stencil for inner nodes and zero for the
boundary:

A = StencilSet(g)
Assume that s is built as before
A.addStencil(s,g.innerPoints())

identity:
idstencil = Stencil(nsd=2,nodes={(0,0): 1.0})

sources:
S = StencilSet(g)
S.addStencil(idstencil,g.innerPoints())

boundary
B = StencilSet(g)
B.addStencil(idstencil,g.boundary())

Next, we need to change source, boundary, and initial functions such that a
vectorized fill algorithm can be used for fields. Consider the boundary condition
function:

29

bf = lambda x,y: exp(-rt)*sin(pi*x)*cos(pix*y)

If we use the trigonometric functions from NumPy instead, they will work di-
rectly with vector arguments:

bf = lambda x,y: exp(-rt)*Numeric.sin(pi*x)*Numeric.cos(pixy)

The source and initial functions are changed accordingly. In order to perform
matrix-vector operations directly using direct_matvec, we need to access the
array that contains the data inside instances of Field. This array is named
data. We can now solve the problem as shown in the following code; note that
the complete revised code is included in Appendix Bl

the unknowns, filled with initial condition
= Field(g)

.fill_vec(initf)

= Numeric.array(u.data)

Qe e

Source and boundary fields:
F = Field(g)

bF = Field(g)

dF = Numeric.array(F.data)
dbF = Numeric.array(bF.data)

build the datastructures in StencilSets:
A.buildMatrixOperator (u)
S.buildMatrixOperator (u)
B.buildMatrixOperator (u)

rt = dt while rt < T:
Vectorized computation of source and boundary
F.fill_vec(dt_f)
bF.£ill_vec(bf)
Get the computed values
dF[:] = F.data
dbF[:] = bF.data

compute an explicit step:
d[:] = A.direct_matvec(d) + S.direct_matvec(dF) + B.direct_matvec(dbF)

if u.isParallel:
copy data back in field, and update:
u.datal:] = d
u.updateField()
and copy back into numeric array:
d[:] = u.datal:]

rt += dt

The only new method introduced here is buildMatrixOperator. When using
the regular user interface, the call operator of a stencilset, e.g., A(u), causes the
sparse matrix structure and accompanying vectors, to be built. As we now use
the direct_matvec method instead, we need to build these structures upfront.
This is the purpose of the buildMatrixOperator method. The slice notation
d[:] is used to copy values in numeric arrays into existing data structures,
rather than creating new storage.

30

cpus: || 1 | 2 | 4 | 8 | 16 | 24 | 32
1000 x 1000, 160 time step: || 365.0 | 185.4 | 93.90 | 46.99 | 23.51 | 16.05 | 12.52
speed—up: 1 1.97 | 389 | 7.77 | 155 | 22.7 | 29.2
1500 x 1500, 240 time step: || 1226 | 620.0 | 315.7 | 160.9 | 78.42 | 52.33 | 40.73
speed—up: 1 1.98 | 3.88 | 7.62 156 | 23.4 | 30.1
Table 8: CPU time in seconds and corresponding speed-up numbers
Problem size || runtime | rel. 1-cpu Python | rel. 32-cpu Python
1000 x 1000, 160 time steps: 107.3 3.40 0.12
1500 x 1500, 240 time steps: 362.4 3.38 0.11

Table 9: CPU time in seconds for the time loop in the solver implemented in
C, as well as speed up relative to the Python solver running on one and 32
processors.

In Table B we list the CPU time for the main computational loop of the
solver, excluding initialization. Compared to the numbers for the same prob-
lem in Section H there is a significant performance gain. Regarding parallel
efficiency, we again observe very good speed up. When compared against the C
program that solves the same problem, the performance gain from the rewrite
is even more visible. Now, the Python solver running on one CPU is just 3.4
times slower than the C solver, while the performance of the original solver was
75 times slower than C. When more processors are used, the Python solver can
solve the problem significantly faster than the scalar C solver. To obtain the
performance increase, we had to implement code that is more difficult to read
and use some less intuitive constructs. In addition, we had to fill the source
and boundary fields in a vectorized manner, which is less flexible than assigning
values point by point. Nevertheless, the approach used is general and can be
applied to many solvers prototyped with PySE, to achieve better performance.

7 Concluding remarks and future development

We have implemented a framework for creating FDM-based solvers for PDEs.
Centred around four abstractions (grid, field, stencil and stencilset), we created
a user interface that yields clean, uncluttered and flexible solvers. The simple
user interface both allows the rapid prototyping of solvers for PDEs and gives
the user a flexible tool for experimenting with different FDMs for the problem
at hand, even interactively if that is desired.

While numerical efficiency not have been our primary focus, we saw in the
case studies how the advanced user interface can be used to achieve quite good
performance. A natural process will be to prototype solvers using the basic
syntax, which will give code that is very close to pseudo code. If the proto-
typed solver eventually evolves into a simulator that needs to be run for larger
problems, or for many time steps, the more advanced functionality can be used
for increased performance. In addition, parallel computers can be put into use
without any extra effort.

There are several issues that should be addressed for the development of
future versions of PySE. The most important of these are the following: sup-
port for higher-order methods in the methods that yield boundary and interior

31

nodes for grids; support for non-linear problems; and support for preconditioned
linear solvers. In addition, support for more flexible boundary conditions and
more complex geometries will be important. The performance issues should
be addressed further, to improve the performance achieved with the basic user
interface, such that the more advanced operations presented in the case studies
in Section Bl become unnecessary.

References

[1] The PyFDM webpage. http://pyfdm.sourceforge.net, 2005.

[2] A. M. Bruaset. A Survey of Preconditioned Iterative Methods. Addison-
Wesley Pitman, 1995.

[3] Federico Bassetti, David Brown, Kei Davis, William Henshaw, and Dan
Quinlan. OVERTURE: An object-oriented framework for high-performance

scientific computing. In Proceedings of Supercomputing’98 (CD-ROM).
ACM SIGARCH and IEEE, 1998.

[4] Rob H. Bisseling. Parallel Scientific Computation: A Structured Approach
using BSP and MPI. Oxford University Press, 2004.

[5] X. Cai, H. P. Langtangen, and H. Moe. On the performance of the python
programming language for serial and parallel scientific computations. Sci-
entific Programming, 13:31-56, 2005.

[6] Xing Cai, Elizabeth Acklam, Hans Petter Langtangen, and Aslak Tveito.
Parallel Computing. In H. P. Langtangen and A. Tveito, editors, Advanced
Topics in Computational Partial Differential Equations - Numerical Meth-
ods and Diffpack Programming, LNCSE, pages 1-56. Springer, 2003.

[7] The Diffpack website. http://www.diffpack.com.

[8] Lisandro Dalcin et al. Mpi for python.
http://sourceforge.net /projects/mpidpy, 2005.

[9] R.D. Falgout, J.E. Jones, and U.M. Yang. The design and implementation
of hypre, a library of parallel high performance preconditioners. In A. M.
Bruaset, P. Bjgrstad, and A. Tveito, editors, Numerical Solution of Partial
Differential Equations on Parallel Computers. Springer, To appear.

[10] Femlab. http://www.femlab.com.
[11] freeFEM. http://www.freefem.org.

[12] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to Parallel
Computing, (2nd. ed.). Addison-Wesley, 2003.

[13] W. Gropp, E. Lusk, and A. Skjellum. Using MPI - Portable Parallel Pro-
gramming with the Message-Passing Interface, (2nd ed.). The MIT Press,
1999.

[14] E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential
FEquations I, Nonstiff Problems. Springer, 2000. Second revised edition.

[15] Konrad Hinsen. ScientificPython. http://dirac.cnrs-
orleans.fr /ScientificPython/.

32

[16] Konrad Hinsen, Hans Petter Langtangen, Ola Skavhaug, and Asmund
(Ddegard. Using BSP and Python to Simplify Parallel Programming. Future
Generation Computer Systems, 2004.

[17] E. N. Houstis, J. R. Rice, S. Weerawarana, A. C. Catlin, P. Papachiou, K.-
Y. Wang, and M. Gaitatzes. PELLPACK: A problem solving environment
for PDE based applications on multicomputer platforms. ACM Transac-
tions on Mathematical Software, 24(1):30-73, 1998.

[18] Scalable Linear Solvers and hypre. http://www.llnl.gov/CASC/linear _solvers.

[19] Arieh Iserles. A First Course in the Numerical Analysis of Differential
Equations. Cambridge University Press, 1996.

[20] H. P. Langtangen. Python Scripting for Computational Science, volume 3.
Springer-Verlag, 2004. 725 pages.

[21] Alex Martelli. Python in A Nutshell. O'Reilly & Associates, Inc, 2003.

[22] Partial Differential Equation Toolbox for Matlab.
http://www.mathworks.com /products/pde/.

[23] Michael Thuné, Eva Mossberg, Peter Olsson, Jarmo Rantakokko, Krister
Ahlander, and Kurt Otto. Object—Oriented Construction of Parallel PDE
Solvers. In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern
Software Tools for Scientific Computing, pages 203—226. Birkh&user, 1997.

[24] Patrick Miller. The pyMPI project. http://pympi.sourceforge.net.
[25] The Message Passing Interface (MPI) Forum. http://www.mpi-forum.org.
[26] Ole Nielsen. The Pypar website. http://datamining.anu.edu.au/ ole/pypar/.

[27] Travis Oliphant. Numerical python web page. http://numeric.scipy.org,
2005.

[28] Overture. http://www.llnl.gov/CASC/Overture/.

[29] P. S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Pub-
lishers, 1997.

[30] The PETSc website. http://www-fp.mcs.anl.gov /petsc.

[31] G. van Rossum and F. L. Drake. Python reference manual.
http://docs.python.org/ref/ref. html, 2005.

[32] W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations.
Springer-Verlag, 1994.

[33] B. Wilkinson and M. Allen. Parallel Programming - Techniques and Appli-
cations Using Networked Workstations and Parallel Computers. Prentice
Hall, 1999.

[34] Asmund @degard, Paul D. Fox, Sverre Holm, and Aslak Tveito. Finite
Element Modeling of Pulsed Bessel Beams and X-Waves using Diffpack.
In Proc. of 25th Int. Acoustical Imaging Symp, pages 59—64, Bristol, UK,
2000.

33

A Complete code for problem (7aH7d)

#!/usr/bin/env python
-*- coding: iso08859-1 -*-

#
(c) Copyright 2005

Author: Asmund (Pdegard
Simula Research Laboratory AS

from pyse import *
from math import exp,sin,cos,pi,sqrt

def runstandalone():
T=0.0025
n=20
m=40

parasize = pypar.size()
myrank = pypar.rank()

If we are parallel, and are using mpich MPI, we need to distribute the values
for the options, because they are only read on the first cpu when using mpich.

if myrank == O:
opts = sys.argv[1:]
pumogts = len(opts)

1_

while i < numopts:
o¥t = opts[l]
if o

Pt == ||_t||
T = float(opts[i+1])
i+=1

if opt == "-n":
n = igt(opts[i+1])
i+=

if opt == "-m":
m = i?t(opts[i+1])
i+=

i4=1

if parasize > 1:
allopts = Numerlc zeros (3,typecode="d?)
if myrank =
allopts = Numeric array((T,n,m))
pypar.broadcast(allopts,0)
if myrank != O:

T = float(allopts[0])
n = int(allopts[1])
m = int(allopts[2])

Solve, return the solution and a reference to the grid
solution,g = solve(T,n,m)

The analytical solution
analytical = lambda x,y: exp(-T)*sin(pi*x)*cos(pi*y)

= Field(g)
u_a.fill(analytical)

The error
error = u_a - solution
error.plot(title=’Error’)

solution.plot(title=’Solution?)
u_a.plot(title=’Analytical solution?)

errornorm = sqrt(error 1nner(error))
if g.myrank == 0 or g.myrank == -1:
print "The norm of the error is: " ,errornorm

if solution.isParallel:
pypar.finalize()

def usage(T,n,m):
print "-t T: solve from O to T (default %s)" % (T)
print "-n steps: Split time in so many steps (default %s)" % (nm)
print "-m div: Split each direction in so many nods (default %s)" % (m)

34

def solve(T=1.0, n=1000, m=100):
solve the problem from 0 to T, dt = 1/1000, dx = 1/100

print "Solve the problem from 0 to %s in s steps, %s grid-nodes" % (T,n,m)

Running time:
rt = 0.0

compute dt:
dt = T/(1.0%n)

Create a grid
g = Grid((m,m),2, ([0.0,1.0],[0.0,1.0]1))

dx = g.dx
h = dt/(g.dx*2)

Functions I need (use rt, dt, and dx)

dt_f = lambda x,y: dt*(-exp(-rt)*sin(pi*x)*cos(pi*y) - \
pi*exp(-rt)*cos(pi*x)*cos(pi*y) + \
pi*exp(-rt)*sin(pi*x)*sin(pi*y) + \

2% (x + y)*pi*pi*exp(-rt)*sin(pi*x)*cos(pi*y))
need only two k-functions, as dx is the same in both directions!
p = lambda x,y: x + y + 0.5*dx
m = lambda x: x + y - 0.5%dx
boundary fu:
bf = lambda x,y: exp(-rt)*sin(pi*x)*cos(pi*y)

initical condition:
initf = lambda x,y: sin(pi*x)*cos(pi*y)

#
k_
k_
#

build the stencil

= Stencil(nsd=2,varcoeff=True,source=dt_f)
.addNode((O,—l),tlambda *x: h*k_p(*x)])

.addNode((-1,0), [lambda *x: h¥k_p(*x)])
.addNode((0,0) , [lambda *x: 1.0 - 2.0*h*(k_m(*x) + k_p(¥x))])
.addNode ((1,0), [lambda *x: h*k_m(*x)])

.addNode((0,1), [lambda *x: h*k_m(*x)])

nnonunnnHF

bs = DirichletBoundary(2,bf)

= StencilSet(g)
.addStencil(s,g.innerPoints())
.addStencil(bs,g.boundary())

Go parallel if we are on parallel stuff
.partition(A)

= Field(g)
.£i11(initf)

ERE B ===

#u.plot(title=’Initical condition’)
while rt < T:
u = A(u)
rt += dt
A.updateSourceDataStructures ()
#u.plot(title=’Example’)
return u,g

if (__name__ == ’__main__’) : runstandalone()

B Complete code for problem ([7aH7d)
Fast version

Here, we give the complete code for the faster solver for heat conduction dis-
cussed in Section

#!/usr/bin/env python
-*- coding: iso8859-1 -*-

#
(c) Copyright 2005

Author: Rsmund (Pdegird
Simula Research Laboratory AS

35

from pyse import *

import SKS
from math import exp,sin,cos,pi,sqrt
import time

def runstandalone():
T=0.0025
n=20
m=40

parasize = pypar.size()
myrank = pypar.rank()

If we are parallel, and are using mpich MPI, we need to distribute the values
for the options, because they are only read on the first cpu when using mpich.

if myrank == 0:
opts = sys.argv[1:]
numopts = len(opts)
i =
while i < numopts:
o¥t = opts[l]
o

p " tll
T = float(opts[i+1])
i+=1

if opt == "-n":
n = i?t(opts[i+1])
i+=

if opt == "-m":
m = i?t(opts[i+1])
i+=

i+=1

if parasize > 1:

allopts = Numeric. zeros (3,typecode="d’)
if myrank == O:

allopts = Numeric.array((T,n,m))
pypar.broadcast (allopts,0)
0:

if myrank !=
T = float(allopts[0])
n = int(allopts[1])
m = int(allopts[2])

Solve, return the solution and a reference to the grid
solution,g,T = solve(T,n,m)

The analytical solution
analytical = lambda x,y: exp(-T)*numarray.sin(pi*x)*numarray.cos (pi*y)

= Field(g)
u_a.fill_vec(analytical)

The error

error = u_a - solution
#error.plot(title=’Error’)
#solution.plot(title=’Solution’)
#u_a.plot(title=’Analytical solution’)

errornorm = sqrt(g dx*g.dy*error. inner(error))
if g.myrank == 0 or g.myrank == -1:
print "The norm of the error is: ",errornorm

if solution.isParallel:
pypar.finalize()

def usage(T,n,m):
print "-t T: solve from O to T (default %s)" % (T)
print "-n steps: Split time in so many steps (default %s)" % (n)
print "-m div: Split each direction in so many nods (default %s)" % (m)

def solve(T=1.0, n=1000, m=100):
solve the problem from O to T, dt = 1/1000, dx = 1/100
myrank = pypar.rank()

if myrank <= 0:
print "Solve the problem from O to %s in %s steps, %s grid-nodes" % (T,n,m)

36

Running time:
rt = 0.0

compute dt:
dt = T/(1.0*n)

Create a grid
g = Grid((m,m),([0.0,1.0],[0.0,1.0]))

dx = g.dx
h = dt/(dx*dx)

Functions for source, coefficients, boundary, initial condition
dt_f = lambda x,y: dt¥exp(-rt)*(-pi*numarray.cos(pi*x)#*numarray.cos(pi*y) \
+ pi*numarray.sin(pi*x)*numarray.sin(pi*y) \
+ (2.0%(x + y)*pi*pi - 1.0)*numarray.sin(gi*x)*numarray.cos(pi*y))
need only two k-functions, as dx is the same in both directions!
k_p = lambda x,y: x + y + 0.5%dx
k_m = lambda x,y: x + y - 0.5%dx
boundary fu:
bf = lambda x,y: exp(-rt)#*Numeric.sin(pi*x)+*Numeric.cos(pi*y)
initical condition:
initf = lambda x,y: numarray.sin(pi#*x)*numarray.cos (pi*y)

build the stencil

= Stencil(nsd=2,varcoeff=True)

.addNode((O,—l),tlambda *x: h*k_p(*x)])

.addNode((-1,0), [lambda *x: h¥k_p(*x)])

.addNode((0,0), [lambda *x: 1.0 - 2.0*h*(k_m(*x) + k_p(*x))])
.addNode ((1,0), [lambda *x: h*k_m(*x)])

.addNode((0,1), [lambda *x: h*k_m(*x)])

nnunnnniFE

dstencil = Stencil(nsd=2,nodes={(0,0): 1.0})
= StencilList(g)
.addStencil(s,g.innerPoints())

= StencilSet(g)
.addStencil (idstencil,g.boundary())

= StencilSet(g)
.addStencil (idstencil,g.innerPoints())

.partition(A)
.doInitParallel ()
.doInitParallel ()

= Field(g)
.fill_vec(initf)

i
A
A
B
B
S
S
Go parallel if we are on parallel stuff
g
B
S
u
u
d = Numeric.array(u.data)

#

Source and boundary fields

F = Field(g)
dF = Numeric.array(F.data)
bF = Field(g)

dbF = Numeric.array(bF.data)

build data structures in StencilSets
A.buildMatrixOperator(u)
B.buildMatrixOperator (u)
S.buildMatrixOperator (u)

reset to start-time again
rt = dt

if myrank <= 0:
print "start..."

ct = -time.clock()

laps = -time.time()

while rt < T:
update source field
F.fill_vec(dt_f)
bF.fill_vec(bf)

dF[:] = F.data
dbF[:] = bF.data

37

d[:] = A.direct_matvec(d) + S.direct_matvec(dF) + B.direct_matvec(dbF)

if u.isParallel:
u.datal[:] = d
u.updateField()
d[:] = u.datal:]

rt += dt

ct += time.clock()

laps += time.time()

if myrank <= O:
print "stop..."
print "Used cgutime in comp.loop: ",ct
print "Elapsed time in comp.loop: ",laps

if not u.isParallel:
u.datal:] = d
return u,g,rt

if (__name__ == ’__main__’) : runstandalone()

38

	Introduction
	Design of PySE
	Abstractions
	Grid
	Field
	Stencil
	StencilSet

	Automatic Parallelization
	Experiments
	PySE overview
	Grid
	Stencil
	StencilSet
	Field
	Parallelization
	Implemented functions and tools
	Stencils
	Neumann Boundary Conditions
	Implemented Solvers
	Implementation of Iterators

	Case studies
	Wave equation in 2D - a convergence study
	On implementation

	Ultrasound
	Heat conduction revisited

	Concluding remarks and future development
	Complete code for problem (7a-7c)
	Complete code for problem (7a-7c) Fast version

